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i ABSTRACT
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“He—atud > the homogenization of a Stefan problem (i.e., heat
conduction with change of phase) when the structure is 'E;periodic and
we provel that the constitutive laws of the limit medium do not depend
upon the boundary conditions and are those of an anisotropically heat con-
ducting medium which undergoes a change of phase at each temperature of

change of phase of the original substances.
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SIGNITICANCE AND EXNPLANATION

We study the homogenization of a periodically distributed mixture of
two (or more) pure media which can undergo one or more changes of rhase.
The problem is to find the properties of the idealized homogeneous medium
(1f it exists) whose behaviour the original mixture approaches when the
periodic mesh gets finer and finer.

It is proved under gquite general boundary conditions, and under the
restriction that for each original medium the heat conductivity is inde-
pendent of the temperature, that such a limit medium exist and that it has
the following properties: its heat diffusion is homogeneous but non -
isotropic in general, its specific heat is an average of the specific
heats of the original media, and it does undergo change of phase at all
the temperatures of change of phase of the original media. This last fact
is in strong agreement with everyday experience, as witnessed for example

by the freezing of ice creanm.
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HOW TO HOMOGENIZE A NONLINEAR DIFFUSION EQUATION
(e.g. STEFAN'S PROBLEM)

Alain Damlamian

1. Introduction

For many physical studies of composite materials, one is more interested in a global
or "macroscopic” behavior of a composite medium rather than in a detailed "microscopic"
one. To put it is a different way, and for reasons that can also come from numerical
analysis when discretization is considered, one is interested in finding the relevant
properties (i.e. the constitutive laws or physical parameters) for an idealized homo-
geneous medium which would have the limit behavior of the composite material when the
size of the periodic mesh goes to zero.

Finding the relevant parameters of this idealized limit (when it exists) is the
origin and one of the main contributions of homogenization theory. Since this is not
intended to be an introduction, let alone a survey, of homogenization theory, the reader
is referred to Bensoussan-Lions-Papanicolaou [1] for a complete set of references.

The model problem we are looking at here is the problem of homogenization of a .
non linear heat equation for a composite material consisting of a periodic mixture of
media which can undergo changes of phase, (Stefan's problem). One can also apply the
present results to electromagnetic composite materials (see Bossavit-Damlamian [1].

The plan is as follows

2, The model ¢-problem; weak formulation,

3. Estimates for the e-problem.

4. A short review of elliptic homogenization.

5. The limit problem and its constitutive laws.

Conclusions

The author is very grateful to Professor J. M, Lasry for raising this interesting question,

to Professor C. Tartar and F. Murat for their helpful suggestions.
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2. The Modal e-problem.

In short, the problem we are looking at is the following:

Let 2 be a given bounded domain (in nsq usually N = 3) with smooth boundary = .
We restrict ourselves to two media Ml and M2 . Their distribution in . is given

according to a periodic structure of mesh size ¢ proportional to a basic period Y of

size 1. The basic period Y is partitioned into two smooth subsets Y and Y_ corre-

1 2
sponding to each medium Ml and M2 , so that correspondingly ¢ is partitioned into
_ ﬂl,a and 32,5 . The boundary between Yl and Y2 is denoted by ! , and its image
in & is ZE which is supposed to be rigid and perfectly heat conducting. As for
3. = T it is split into T and T , corresponding to each medium.

l,¢ 2'¢

It is assumed as customary for a Stefan problem that the variations in volume are
negligeable,

Time will be restricted to an interval [0,T] and it will be shown that the result
is independent of T ,

In @ = )0,Tl =~ .. , each change of phase for each medium will, in the strong formula-
tion, generate a free boundary separating the phases. With our convention that there is
at most one change of phase for each medium, two boundaries si,e (i = 1,2) {(not
necessarily connected) are generated.

Before writing the strong formulation, we introduce some notations: for each medium
i (=1,2) Ji(v), ei, bi' ki , denote the specific heat (a function of the temperature v ),
the temperature of change of phase, the latent heat, the heat conductivity (which is
assumed to be strictly positive independent of the temperature v , a limitation for our
final result but which has not been lifted so far).

We can now write the strong formulation of the preclen. ‘e Dok for v;(t,x)
(temperature) and the two surfaces § satizfying

i,e
[3 \ si €

in (0,T) x Qi
’
(2.1)
€ avE ;
ai(v) —5?-div(ki 7 v7) :
where f is an internal heatinsg '«
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f ;
‘ on (0,T) » I . continuity of v
3
(2,2) i . continuity of heat flux
—- £ g - £ id
{ (kl. v'en = k2 TV n )
on S, v o= 7
i,e i
(2.3) L e .
bi cosf{n,t) - E [hi ng cos(n,x.)]S. =0
] i,:
where n is the unit normal to si in space time, | ]S indicates the
re .
> 1,
jump across Si . along n . This is the classical Stefan condition on the
r
free boundary.
Initial condition: v~ (0) given in € together with the initial
(2.4) boundaries Si E(0); .hey are assumed to be compatille (v (o) = =

’

As for the lateral boundary conditions, it is known in the linear homogenization theory
that provided they are of variational form, they do not interfere with the limiting
process, To be complete we shall take them linear inhamogenous of mixed type. We
assume a smooth partition of [ in rt and T (I with non empty interior) and

require the following:

(2.5) ve(t,x) = g (£,x) on I
- avC € + +
v = r
(2.6) ki Tt PV g (t,x) on T n ie

here P 1is a non-~negative smooth function measuring the permeability of the boundary

*  to heat flow, g- and g+ are given smooth functions, It is also assumed that

r
the boundary data g-,g+ agrees with the initial data vg at t = 0., It turns out
that conditions (2.2) and (2.3) are Rankine-Hugoniot type conditions for thz energy
balance equation taken in the distribution sense on Q . 1In order to write this equation
(which gives a weak formulation) we need some notations:

For each i , let Yi denote the maximal monotone graph defined (up to a constant)
by

(2.7) Yi(v) = fv ails)ds + b, H(v - Bi)

-3-




(H is the Heaveside function). This represents the enthalpy as a function of tlce
temperature.

We also put:

(2.8) y(ly,v) = yi(v) for y in Yi
(2.9) kily) = ki for y in Yi

Then (2.1), (2.2), (2.3) reduce to

€ .
(2.10) M divk® v v = £ in D'(Q)
3t €

(2.11) utle,x) W2, vEe,x)

The initial conditions (2.4), can be expressed in terms of u alone as an
initial condition
(2.12) uo) = u_,

0

which we can assume independent of ¢ .
For the lateral boundary conditions, we introduce an auxiliary problem, where the
time t 1is a mere parameter:
Let gE(t,x) be the solution of
: X € .
- div(k { ’ ) Vg (t)) =0 in @

ge(t) =g (t) on T
(2.13)

€
x dg (t) € — ot +
k( < ) sn t P9 (t) g (t) on T .

Clearly g% is bounded in H (2) uniformly in € . Now (2.1)=(2.6) has the
following weak formulation

(2.14) e ut s [Ta%ws -0 = [go+ [ ¢y
Q 0 Q Q

for all ¢ in Cl(Q), ¢(T) =0 and ¢ =0 on (0,T) x I
(2.15) v -g°=0 on t0,m xT.
In (2.14) a® is the bilinear Dirichlet form given by
(2.16) awe) = [R(Z)wew) + [pw e,
The smoothness assumptiong made for F-,F+ allow for (2.14) to take ¢ in a larger
class namely ¢ ¢ wl’z(O,T;V) where V is the variational space: {y ¢ Hl(ﬁ),u/r- = 0},

(scc Damlamian [1] for a detailed study).

g




(2.17) Definition: (uc,ve) is a weak solution for problem (2.1)-(2.6) if and only

if they satisfy (2.11), (2.14), (2.15).

(2.18) Theorem (see Damlamian {1] and [2]).

Under the hypothesis that the ai's are bounded above and below away from zero,
there exists a unique solution (uc,vs) for problems (2.11), (2.14), (2.15) which
satisfies:

o e w20, mv% o L7 (0,752 (@)

Wle?

2 w
vE-g® ¢ (0,T,L° () n L7(0,T;V).

Instead of giving a detailed proof we will only give the idea of how to obtain

uniform estimates in the following paragraph.




3. The uniform estimates,

(3.1) Progosition. The solutions (ua,vi) ¢ > 0 satisfy the following:

€ . . 1,2 © 2 . : .0
u is bounded in W (0T ;v*) oL (OT ;L (2)) uniformly in - > ,

vo - 95 is bounded in Wl’Z(OT;L2($)) n Lm(OT,V) uniformly in . = O

Proof: To obtain these estimates, it is enough to show them in the case of smooth 3.

Then u® and v° are smooth enough to replace (2,14) by

T .
3.2y -+ a5 =) fe 4+ v(0u = [ ¢(Mu’ (D
Q 0 0 2 Q
, 1,2
for all ¢ in W (0T;V).
Then taking ¢ = [A;]_luF (AF‘ being the operator associated to a® on V) one gets:
. 2 t - . - ¢
(3.3 TN o [T vRT a0 wfeTe [Tt e
' 0 Q £ (0,t) 82 0 € Er

where i .“»; is the dual nomm of (a(y ,sC))‘i on V , the latter being uniformly

IV*
equivalent to the standard norm on V .

£ -1 du®

Also taking ¢ = [A] Ty one gets

e 2
2 t di -
(3.4) cllve(t)] 5 + f “—du?" v S (a constant which depends upon f,VO,g+,g P I
@ o Ee
From (3.3) and (3,.4) one gets (because vsuE can be assumed non negative), that v
is bounded in L7(0,T;L2(2))

. 1,2
u® in oW’ (0,T;V*)

£ €
Then one takes ¢ = L"d_t’_‘l_) to get

dve

ac LZ(Q)

+ -
f,9 .9 lvor--- ).

€, E
at + a (v —gc,vg—ge) ¢, (a constant which depends upon

t
(3.5) ey Al
o}
; € , 1,2 2
From (3,5) one infers that v  stays bounded in W (0,T;L7(R)) and
€__€ . bt
v =g stays bounded in L (0,T;v).
A detailed proof of the above can be found in A. Damlamian [1] and [2], and in much

simpler cases in Brezis [4] and Lions [1l].
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It is worth noticing that given the estimates of (3,1) (even not uniform in - )
equation (2.14) can be replaced by (3.2) or even by

3.6) /5 attvi-gte) =

[ g+ [ clug - uten
0 0 p

for all v in V (independent of t ).
This remark (cf. Damlamian [1]) shows that (u',vi) is the solution of a simpler varia-
tional inequality (of the type studied by G. Duvaut [1]).
Another way of looking at (3.6) is the following, since the operator does not depend
upon time

Fa" ey, = [ Ee) +umut o)y
(3.7 Sl

vi) =0  on T
for all t - (0,T), all ¢ in VvV , where

VL(t,x) = ft (vc(s,x) - gf(s,x))ds
0

Flt,%x) = ft f({s,x)ds.
0




4. A short review of elliptic homogenization

The purpose of this paragraph is to show how elliptic homogenization works and how

it can be applied in the present problem. See Bensoussan-Lions-Papanicolacu [1] (Also

L. Tartar [1]). With the same notations as above, we consider the operator

At = -div(k ( % JV) on G . Let w® be the variational sclution of
A wt = £% in @
e - -
(4.1) w =g on T
X awE € + +
k( o ) 5o +tpw =g on T
that is

3 € [ +
4.2)  a“(w e = é £+ [ g ¥

€ - -

for all ¢ in Vv , =g on I .

W
€ 0 X 2
We assume that £  converges to f  weakly in L7 (Q).

(4.3) Proposition: As ¢ goes to zero, w® converges weakly in Hl(i) to the

solution wo of the following problem

+
(4.4) LWl = e [ gt
Q T
for all ¢ in Vv , w0 = g~ on I , where ao is the bilinear form given by
0 w ¢
a (w,y) = f Z q. , = T ¢+ j Pwy
I j, axj Bxl r+

with constant coefficients qj given by

)

(4.5) q, , = —t

e b
5,2 = mes () £ k(y) ¢ (xr yl)v(x yj)

where xJ is the solution (defined uniquely up to a constant) of

(4.6) —divik(y) V x°) = ~div(k(yle), x? periodic in Y .

ej is the j'th unit vector in nﬁi, yj being the coordinate on ej .

Proof: It is clear that w® being bounded in Hl(Q) {by coerciveness of a® with the

Dirichlet boundary condition). So we can assume (via uniqueness of the solution for the

limit problem-to-be) that w® - wo. Then by a result of Tartar (1], one

2
loc

by (4.5), (4.6)), so that (4.2) goes to the limit to (4.4), which is the

k( % ) %i— converges weakly in L. (Q) (hence in Lz(ﬁ)) to ) qj:
£ b]

of

-8-
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weak formulation




A = f in
0 - -
w =g in T
(4.7 Bwo 0 + + |
——— +pw =g on T i
3y !
0
A
{
Here QYB is the conormal derivative for AO, which one should notice is not .
4]
A
diagonal, but still symmetric, and with constant coefficients
2
a%=- 7 q, =2
- - jL  9x,9% °
5,0 7 3%

A
Here we have also used the compactness of the trace operator from Hl(Q) into L7(D).

A




5. The limit problem and its constitutive laws.
Making use of the results of paragraph 4, one sees that gﬁ(t) converges weakly in
1. . J
H (&) to the solution g (t) of
0 0
f A g (t) =0

) =g e) on T

(5.1) o]
3 t 0 + +
3%~L—L +pgi(t) =g on o
L A
*
Also, by the estimates of (3.1) one can extract a sequence of values of »( ) going

to zero such that

uf @ in W or,vm 0 LTomiLi )
vE-g® = v0g% in Wl (o,T,2% (@) o L7(0T,v) .
Hence u converges strongly in C([0,T];V*) and for all t . (0,T], u (t) converges

2
weakly to uo(t) in L7(Q).
Consequently we can apply the result of (4.3) to (3.7) so that V°(t) which

N .
obviously converges to Vo(t) = f (vo(s) - go(s))ds satisfies:
0

L) = [ e+ - o
(5.2) o o _
vi(t) =0 on T .

Using the equivalence with the weak formulation of type (2.14) we get
0 -
v0 -g =0 on (0,T) x T
(5.3)
t 0
f - ¢! u0 + f ao(v - go,w) = f fe + f uov(O)
Q 0 Q Q

for all ¢ in wl'z(OT;V) ¢(T) = ¢ 0.

1(0T)xI™ =
We now turn to (2,11), that is
ue(t,x) € v( % ’ ve(t,x)) .

Assuming ¢ is chosen so that gE converges to go weakly in HI(Q), then v°©

® 1
converges to v0 weakly in wl'z(O,T;LZ(Q) n L”{0T;H (Q)) so that the convergence is

*)
The limit problem having a unique solution, it will be clear by the end of the proof
that the whole sequence converges.

-10-
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uniform in (([2,T], L2(L)) for example.

i X -
Let ¢ be a real number, different from By put wé(x) = 4{ = ,c). Clearly W,
converges weakly in L2 to a constant
(5.4) S p— [ viy,0a
. TiC} = mes (V) J YA\Y, >4
Y
Using the monotonicity of v( i ,*) we have
(e = (@ (8,0 = w ) (v E,x) - <) 20 a.e.

Hence, using the proper convergences, we get that u(t,x) converges weakly in the
) 0 - .
sense of measures on & for all t to (u - ‘{(c))(v0 - ¢) which has to be non negative.
9 . . . - ;
Hence u (t,x) belongs to the unique maximal extension of the monotone graph Y , which

we denote by ; . Consequently (2.1l) goes to

(5.5) uo(t,x) . ?(vo(t,x)) a.e. in x , for all t .




i
%
1]
A

(TN

6. Conclusion
we conclude that the limit equations correspond to the weak formulation of the
following strong problem:

du o]
at + A v=f

ult,x) € ylvit,x))

(6.1) u(0,x) = uo(u)
vit,x) = g-(t,x) x eI
mfv (t,x) + p vit,x) = g+(t,x) xeTt
A

or to look at it from the Stefan problem point of view, a non isotropic Stefan problem.

One can notice that we recover the heat diffusion operator of the linear case,
that is a hamogeneous but anisotropic heat diffusion.

One also gets an "averaging” phenomenon for the graphs Yi's over Y , which is
the only averaging consistent with the fact that both yi's are defined up to an additive
constant and so is ; . Both temperatures of change of phases appear for discontinuities
of ; , which is in agreement with daily experience (any other averaging of Yl and Y2
would have yielded no discontinuity in the average, hence no change of phase). It is
easy to see that the specific heat and latent heat of the limit medium are averages over
Y of the corresponding terms.

Finally, on the theoretical side of things, it is of interest to realize that the
isotropic diffusion laws are not stable under homogenization of Stefan problems, but
anisotropic ones are stable.

It remains to prove that the above can be extended to the case of temperature--
dependent heat conductivity for each medium, which is already more complicated but solved

in the non Stefan case (see Tartar (1]).
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